Physics:Timeline of condensed matter physics

From HandWiki
Short description: None


This article lists the main historical events in the history of condensed matter physics. This branch of physics focuses on understanding and studying the physical properties and transitions between phases of matter. Condensed matter refers to materials where particles (atoms, molecules, or ions) are closely packed together or under interaction, such as solids and liquids. This field explores a wide range of phenomena, including the electronic, magnetic, thermal, and mechanical properties of matter.

This timeline includes developments in subfields of condensed matter physics such as theoretical crystallography, solid-state physics, soft matter physics, mesoscopic physics, material physics, low-temperature physics, microscopic theories of magnetism in matter and optical properties of matter and metamaterials.

Even if material properties were modeled before 1900, condensed matter topics were considered as part of physics since the development of quantum mechanics and microscopic theories of matter. According to Philip W. Anderson, the term "condensed matter" appeared about 1965.[1]

For history of fluid mechanics, see timeline of fluid and continuum mechanics.

Before quantum mechanics

Prehistory

Antiquity

A piece of magnetite with permanent magnetic properties were noticed already in Ancient Greece

Classical theories before the 19th century

  • 1611 – Johannes Kepler first states the Kepler conjecture about sphere packing in three-dimensional Euclidean space. It states that no arrangement of equally sized spheres filling space has a greater average density than that of the cubic close packing (face-centered cubic) and hexagonal close packing arrangements.[12]
  • 1621 – Willebrord Snellius reformulates the laws of refraction and reflection of light into Snell's law.[13]
  • 1660 – Robert Hooke postulates the simplest equation of linear elasticity known as Hooke's law.[14]
  • 1687 – Isaac Newton postulates the Newton's laws of motion.[15]
  • 1701 – Newton studies heat, leading to Newton's law of cooling.[16]
  • 1729 – Scientist Stephen Gray discovers the electrical conduction of metals.[17]
  • 1778 – Diamagnetism was first discovered when Anton Brugmans observed in 1778 that bismuth was repelled by magnetic fields.[18]
  • 1781 – René Just Haüy (often termed the "Father of Modern Crystallography"[19]) discovers that crystals always cleave along crystallographic planes. Based on this observation, and the fact that the inter-facial angles in each crystal species always have the same value, Haüy concluded that crystals must be periodic and composed of regularly arranged rows of tiny polyhedra (molécules intégrantes). This theory explained why all crystal planes are related by small rational numbers (the law of rational indices).[20][21]

19th century

Schema of the classical Hall effect discovered in 1879, where a voltage is created perpendicular to the current in a circuit due to the influence of a magnetic field.

20th century

Paul Drude, author of the Drude model in 1900. He understood that thermal properties of metals could be understood as a gas of free electrons.

Early 1900s

Second half of the 20th century

The liquid helium is in the superfluid phase. Discovered by Pyotr Kapitsa in 1938. First theoretically model with Ginzburg–Landau theory in 1950.
Graphene: a single atomic layer of graphite first produced in 2004.

21st century

See also

References

  1. 1.0 1.1 "Philip Anderson". Princeton University. http://www.princeton.edu/physics/people/display_person.xml?netid=pwa&display=faculty. 
  2. Vandiver, Pamela B.; Soffer, Olga; Klima, Bohuslav; Svoboda, Jiři (November 24, 1989). "The Origins of Ceramic Technology at Dolni Věstonice, Czechoslovakia". Science 246 (4933): pp. 1002–1008. 
  3. "Hand tool - Neolithic, Stone, Flint | Britannica" (in en). https://www.britannica.com/technology/hand-tool/Neolithic-tools. 
  4. "Bronze Age" (in en). 2018-01-02. https://www.history.com/topics/pre-history/bronze-age. 
  5. "Iron Age" (in en). 2018-01-03. https://www.history.com/topics/pre-history/iron-age. 
  6. 6.0 6.1 6.2 Mattis, Daniel C. (2006-03-10) (in en). Theory Of Magnetism Made Simple, The: An Introduction To Physical Concepts And To Some Useful Mathematical Methods. World Scientific Publishing Company. ISBN 978-981-310-222-4. https://books.google.com/books?id=9EQyDwAAQBAJ. 
  7. Baigrie, Brian (2007), Electricity and Magnetism: A Historical Perspective, Greenwood Publishing Group, p. 1, ISBN 978-0-313-33358-3 
  8. Stewart, Joseph (2001), Intermediate Electromagnetic Theory, World Scientific, p. 50, ISBN 9-8102-4471-1 
  9. Harvey, George (2006). "A New History of Western Philosophy". Ancient Philosophy 26 (1): 226–229. doi:10.5840/ancientphil200626156. ISSN 0740-2007. 
  10. "Aristotle - Logic, Metaphysics, Ethics | Britannica" (in en). https://www.britannica.com/biography/Aristotle/Philosophy-of-mind. 
  11. Smith, A. Mark (1982). "Ptolemy's Search for a Law of Refraction: A Case-Study in the Classical Methodology of "Saving the Appearances" and its Limitations". Archive for History of Exact Sciences 26 (3): 221–240. doi:10.1007/BF00348501. ISSN 0003-9519. 
  12. Weisstein, Eric W.. "Kepler Conjecture" (in en). https://mathworld.wolfram.com/. 
  13. "Snell's law | Definition, Formula, & Facts | Britannica" (in en). 2023-09-12. https://www.britannica.com/science/Snells-law. 
  14. "Hooke's law | Description & Equation | Britannica" (in en). 11 October 2023. https://www.britannica.com/science/Hookes-law. 
  15. American Heritage Dictionary (January 2005). The American Heritage Science Dictionary. Houghton Mifflin Harcourt. p. 428. ISBN 978-0-618-45504-1. https://books.google.com/books?id=yKUagx8PB_EC&pg=PA428. 
  16. CHENG, K. C.; and FUJII, T. (1998-01-01). "heat in history Isaac Newton and Heat Transfer". Heat Transfer Engineering 19 (4): 9–21. doi:10.1080/01457639808939932. ISSN 0145-7632. https://www.tandfonline.com/doi/abs/10.1080/01457639808939932. 
  17. "Electromagnetism - Discovery, Uses, Physics | Britannica" (in en). https://www.britannica.com/science/electromagnetism/Historical-survey. 
  18. Gerald Küstler (2007). "Diamagnetic Levitation – Historical Milestones". Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg. 52, 3: 265–282. http://revue.elth.pub.ro/viewpdf.php?id=55. 
  19. Brock, H. (1910). The Catholic Encyclopedia, New York: Robert Appleton Company.
  20. Haüy, R.J. (1782). Sur la structure des cristaux de grenat, Observations sur la physique, sur l'histoire naturelle et sur les arts, XIX, 366-370
  21. Haüy, R.J. (1782). Sur la structure des cristaux des spaths calcaires, Observations sur la physique, sur l'histoire naturelle et sur les arts. XX, 33-39
  22. "Alessandro Volta | Biography, Facts, Battery, & Invention | Britannica" (in en). 2023-09-25. https://www.britannica.com/biography/Alessandro-Volta. 
  23. "Atom - Dalton, Bohr, Rutherford | Britannica" (in en). https://www.britannica.com/science/atom/The-beginnings-of-modern-atomic-theory. 
  24. Bain, Ashim Kumar (2019-05-29) (in en). Crystal Optics: Properties and Applications. John Wiley & Sons. ISBN 978-3-527-82303-1. https://books.google.com/books?id=5_GaDwAAQBAJ&dq=birefringence+history+brewster&pg=PA28. 
  25. "Dulong–Petit law | Thermodynamics, Heat Capacity, Specific Heat | Britannica" (in en). https://www.britannica.com/science/Dulong-Petit-law. 
  26. "Seebeck effect | Thermoelectricity, Temperature Gradients & Heat | Britannica" (in en). https://www.britannica.com/science/Seebeck-effect. 
  27. "Joseph Fourier | Biography & Facts | Britannica" (in en). 2025-05-12. https://www.britannica.com/biography/Joseph-Baron-Fourier#ref171778. 
  28. Frankenheim, M.L. (1826). Crystallonomische Aufsätze, Isis (Jena) 19, 497-515, 542-565
  29. "Ohm's law | Physics, Electric Current, Voltage | Britannica" (in en). 2023-09-05. https://www.britannica.com/science/Ohms-law. 
  30. "Peltier effect | Definition, Discovery, & Facts | Britannica" (in en). 2023-09-26. https://www.britannica.com/science/Peltier-effect. 
  31. Miller, W.H. (1839). A Treatise on Crystallography, Deighton-Parker, Cambridge, London
  32. "James Prescott Joule | Biography & Facts | Britannica" (in en). 2023-10-07. https://www.britannica.com/biography/James-Prescott-Joule. 
  33. "Faraday effect | Magnetic Field, Electromagnetic Induction & Polarization | Britannica" (in en). https://www.britannica.com/science/Faraday-effect. 
  34. Pasteur, L. (1848). Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire (Memoir on the relationship that can exist between crystalline form and chemical composition, and on the cause of rotary polarization), Comptes rendus de l'Académie des sciences (Paris), 26 : 535–538
  35. Bravais, A. (1850). Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l'espace, J. l'Ecole Polytechnique 19, 1
  36. Franz, R.; Wiedemann, G. (1853). "Ueber die Wärme-Leitungsfähigkeit der Metalle" (in de). Annalen der Physik und Chemie 165 (8): 497–531. doi:10.1002/andp.18531650802. Bibcode1853AnP...165..497F. https://onlinelibrary.wiley.com/doi/10.1002/andp.18531650802. 
  37. "Thomson effect | Thermal Conduction, Heat Transfer & Joule-Thomson | Britannica" (in en). https://www.britannica.com/science/Thomson-effect. 
  38. 38.0 38.1 38.2 38.3 38.4 38.5 38.6 Peacock, Kent A. (2008). The Quantum Revolution: A Historical Perspective. Westport, Connecticut: Greenwood Press. pp. 175–183. ISBN 978-0-313-33448-1. 
  39. "Who was James Clerk Maxwell?". https://clerkmaxwellfoundation.org/html/about_maxwell.html. 
  40. 40.0 40.1 40.2 Schastlivtsev, Vadim M.; Zel'dovich, Vitaly I. (2022-02-07) (in en). Physical Metallurgy: Metals, Alloys, Phase Transformations. Walter de Gruyter GmbH & Co KG. ISBN 978-3-11-075802-3. https://books.google.com/books?id=sutcEAAAQBAJ&dq=history+of+physical+metallurgy+austen&pg=PA2. 
  41. Encyclopaedia of Physics (2nd Edition), R. G. Lerner, G. L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3.
  42. Lorenz, L. (1872). "Bestimmung der Wärmegrade in absolutem Maasse" (in de). Annalen der Physik und Chemie 223 (11): 429–452. doi:10.1002/andp.18722231107. Bibcode1872AnP...223..429L. https://onlinelibrary.wiley.com/doi/10.1002/andp.18722231107. 
  43. Braun, F. (1874), "Ueber die Stromleitung durch Schwefelmetalle" (in de), Annalen der Physik und Chemie 153 (4): 556–563, doi:10.1002/andp.18752291207, Bibcode1875AnP...229..556B, https://books.google.com/books?id=YBJbAAAAYAAJ&pg=PA556 
  44. Kerr, John (1875). "XL. A new relation between electricity and light: Dielectrified media birefringent" (in en). The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50 (332): 337–348. doi:10.1080/14786447508641302. ISSN 1941-5982. https://www.tandfonline.com/doi/full/10.1080/14786447508641302. 
  45. "Hall effect | Definition & Facts | Britannica" (in en). 2023-09-11. https://www.britannica.com/science/Hall-effect. 
  46. Sohncke, L. (1879). Entwickelung einer Theorie der Krystallstruktur, B.G. Teubner, Leipzig
  47. "Piezoelectricity | Piezoelectricity, Acoustic Wave, Ultrasound | Britannica" (in en). 2023-09-01. https://www.britannica.com/science/piezoelectricity. 
  48. "Thermionic emission | Thermionic Emission, Vacuum Tubes, Electron Flow | Britannica" (in en). https://www.britannica.com/science/thermionic-emission. 
  49. "Photoelectric effect | Definition, Examples, & Applications | Britannica" (in en). 2023-10-09. https://www.britannica.com/science/photoelectric-effect. 
  50. Mitov, Michel (2014-05-19). "Liquid-Crystal Science from 1888 to 1922: Building a Revolution" (in en). ChemPhysChem 15 (7): 1245–1250. doi:10.1002/cphc.201301064. ISSN 1439-4235. PMID 24482315. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.201301064. 
  51. Fedorov, E. (1891). The symmetry of regular systems of figures, Zap. Miner. Obshch. (Trans. Miner. Soc. Saint Petersburg) 28, 1-146
  52. Schoenflies, A. (1891). Kristallsysteme und Kristallstruktur. B. G. Teubner
  53. Dahl, Per F. (1997). Flash of the Cathode Rays: A History of J J Thomson's Electron. CRC Press. p. 10. 
  54. "Milestone 1: Nature Milestones in Spin" (in en). https://www.nature.com/milestones/milespin/full/milespin01.html. 
  55. "J.J. Thomson | Biography, Nobel Prize, & Facts | Britannica" (in en). 2023-08-26. https://www.britannica.com/biography/J-J-Thomson. 
  56. Dressel, Martin; Grüner, George (2002-01-17). Electrodynamics of Solids: Optical Properties of Electrons in Matter (1 ed.). Cambridge University Press. doi:10.1017/cbo9780511606168.008. ISBN 978-0-521-59253-6. https://www.cambridge.org/core/product/identifier/9780511606168/type/book. 
  57. See J. Valasek (1920). "Piezoelectric and allied phenomena in Rochelle salt". Physical Review 15 (6): 537. doi:10.1103/PhysRev.15.505. Bibcode1920PhRv...15..505.. https://zenodo.org/record/1960072.  and J. Valasek (1921). "Piezo-Electric and Allied Phenomena in Rochelle Salt". Physical Review 17 (4): 475. doi:10.1103/PhysRev.17.475. Bibcode1921PhRv...17..475V. https://zenodo.org/record/1528280. 
  58. "The Nobel Prize in Chemistry 1953" (in en-US). https://www.nobelprize.org/prizes/chemistry/1953/staudinger/facts/. 
  59. Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion" (in en). Mathematical Proceedings of the Cambridge Philosophical Society 24 (1): 111–132. doi:10.1017/S0305004100011920. ISSN 0305-0041. Bibcode1928PCPS...24..111H. https://www.cambridge.org/core/product/identifier/S0305004100011920/type/journal_article. 
  60. Peierls, Rudolf Ernst (1985). Bird of passage: recollections of a physicist. Princeton paperbacks. Princeton, N.J.: Princeton Univ. Press. ISBN 978-0-691-08390-2. 
  61. "Plasma - Natural, State, Matter | Britannica" (in en). https://www.britannica.com/science/plasma-state-of-matter/Natural-plasmas. 
  62. "Short Biography of Egil A. Hylleraas". January 26, 2018. https://www.mn.uio.no/hylleraas/english/about/hylleraas/life-of-hylleraas.html. 
  63. Hoddeson, Lillian, ed (1992). Out of the crystal maze: chapters from the history of solid state physics. New York, New York ; Oxford, [England]: Oxford University Press. ISBN 978-0-19-505329-6. 
  64. Rjabinin, J. N. and Schubnikow, L.W. (1935) "Magnetic properties and critical currents of superconducting alloys", Physikalische Zeitschrift der Sowjetunion, vol. 7, no.1, pp. 122–125.
  65. Rjabinin, J. N.; Shubnikow, L. W. (1935). "Magnetic Properties and Critical Currents of Supra-conducting Alloys". Nature 135 (3415): 581. doi:10.1038/135581a0. Bibcode1935Natur.135..581R. 
  66. Hartree, D. R.; Hartree, W. (May 1935). "Self-consistent field, with exchange, for beryllium" (in en). Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 150 (869): 9–33. doi:10.1098/rspa.1935.0085. ISSN 0080-4630. Bibcode1935RSPSA.150....9H. https://royalsocietypublishing.org/doi/10.1098/rspa.1935.0085. 
  67. 67.0 67.1 Edwards, P. P.; Johnston, R. L.; Rao, C. N. R.; Tunstall, D. P.; Hensel, F. (1998). "The Metal-Insulator Transition: A Perspective". Philosophical Transactions: Mathematical, Physical and Engineering Sciences 356 (1735): 5–22. ISSN 1364-503X. https://www.jstor.org/stable/54951?seq=8. 
  68. Ottonello, Giulio Armando (2024) (in en). Quantum Geochemistry. Springer Nature. ISBN 978-3-031-21837-8. https://www.google.fr/books/edition/Quantum_Geochemistry/fvEGEQAAQBAJ?hl=en&gbpv=1&dq=peierls+boer+verwey+mott&pg=PA945&printsec=frontcover. 
  69. Vishwanath, Ashvin (2015-09-08). "Where the Weyl Things Are" (in en). Physics 8: 84. doi:10.1103/PhysRevX.5.031013. https://physics.aps.org/articles/v8/84. 
  70. Landau, L. (1941). Theory of the superfluidity of helium II. Physical Review, 60(4), 356.
  71. Casimir, H. B. G.; Polder, D. (1948-02-15). "The Influence of Retardation on the London–van der Waals Forces" (in en). Physical Review 73 (4): 360–372. doi:10.1103/PhysRev.73.360. ISSN 0031-899X. Bibcode1948PhRv...73..360C. 
  72. Casimir, H. B. G. (1948). "On the attraction between two perfectly conducting plates". Proc. Kon. Ned. Akad. Wet. 51: 793. https://www.dwc.knaw.nl/DL/publications/PU00018547.pdf. 
  73. Ehrenberg, W; Siday, RE (1949). "The Refractive Index in Electron Optics and the Principles of Dynamics". Proceedings of the Physical Society B 62 (1): 8–21. doi:10.1088/0370-1301/62/1/303. Bibcode1949PPSB...62....8E. 
  74. 74.0 74.1 "December 1958: Invention of the Laser" (in en). http://www.aps.org/publications/apsnews/200312/history.cfm. 
  75. J. C. Slater; G. F. Koster (1954). "Simplified LCAO method for the Periodic Potential Problem". Physical Review 94 (6): 1498–1524. doi:10.1103/PhysRev.94.1498. Bibcode1954PhRv...94.1498S. 
  76. Geballe, T. H.; Hulm, J. K. (1996). Bernd Theodor Matthias 1918–1990. National Academy of Science. http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/matthias-bernd.pdf. 
  77. Fröhlich, H. (July 1954). "Electrons in lattice fields". Advances in Physics 3 (11): 325–361. doi:10.1080/00018735400101213. ISSN 0001-8732. Bibcode1954AdPhy...3..325F. 
  78. Dresselhaus, G. (1955-10-15). "Spin–Orbit Coupling Effects in Zinc Blende Structures". Physical Review 100 (2): 580–586. doi:10.1103/PhysRev.100.580. Bibcode1955PhRv..100..580D. 
  79. Kubo, Ryogo (1957). "Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems". J. Phys. Soc. Jpn. 12 (6): 570–586. doi:10.1143/JPSJ.12.570. http://journals.jps.jp/doi/pdf/10.1143/JPSJ.12.570. 
  80. Kubo, Ryogo; Yokota, Mario; Nakajima, Sadao (1957). "Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance". J. Phys. Soc. Jpn. 12 (11): 1203–1211. doi:10.1143/JPSJ.12.1203. Bibcode1957JPSJ...12.1203K. 
  81. Rostky, George. "Micromodules: the ultimate package". http://www.eetimes.com/special/special_issues/millennium/milestones/kilby.html. 
  82. Hopfield, J. J. (1958-12-01). "Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals" (in en). Physical Review 112 (5): 1555–1567. doi:10.1103/PhysRev.112.1555. ISSN 0031-899X. Bibcode1958PhRv..112.1555H. https://link.aps.org/doi/10.1103/PhysRev.112.1555. 
  83. Schirber, Michael (2025-10-07). "Nobel Prize: Quantum Tunneling on a Large Scale" (in en). Physics 18: 170. doi:10.1103/PhysRevLett.53.1260. https://physics.aps.org/articles/v18/170. 
  84. E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela – Collected Papers (Leningrad), v.II, 162-176 (1959) (in Russian), English translation: Supplemental Material to the paper by G. Bihlmayer, O. Rader, and R. Winkler, Focus on the Rashba effect, New J. Phys. 17, 050202 (2015), http://iopscience.iop.org/1367-2630/17/5/050202/media/njp050202_suppdata.pdf.
  85. Kamenev, Alex (2011). Field theory of non-equilibrium systems. Cambridge: Cambridge University Press. ISBN 978-0-521-76082-9. OCLC 721888724. 
  86. W. A. Little and R. D. Parks, "Observation of Quantum Periodicity in the Transition Temperature of a Superconducting Cylinder", Physical Review Letters 9, 9 (1962), doi:10.1103/PhysRevLett.9.9
  87. Wagner, Herbert; Schollwoeck, Ulrich (2010-10-08). "Mermin-Wagner Theorem" (in en). Scholarpedia 5 (10): 9927. doi:10.4249/scholarpedia.9927. ISSN 1941-6016. Bibcode2010SchpJ...5.9927W. 
  88. Josephson, Paul R. (2010). Lenin's Laureate: Zhores Alferov's Life in Communist Science. MIT Press. ISBN 978-0-262-29150-7. https://books.google.com/books?id=WcXxCwAAQBAJ&pg=PA44. 
  89. Slyusar, V.I. (October 6–9, 2009). "Metamaterials on antenna solutions". 7th International Conference on Antenna Theory and Techniques ICATT'09. Lviv, Ukraine. pp. 19–24. http://www.slyusar.kiev.ua/019_024_ICATT_2009.pdf. 
  90. "Soft matter physics". https://www.iop.org/explore-physics/big-ideas-physics/soft-matter-physics. 
  91. Mansfield, P; Grannell, P K (1973). "NMR 'diffraction' in solids?". Journal of Physics C: Solid State Physics 6 (22): L422. doi:10.1088/0022-3719/6/22/007. Bibcode1973JPhC....6L.422M. 
  92. Garroway, A N; Grannell, P K; Mansfield, P (1974). "Image formation in NMR by a selective irradiative process". Journal of Physics C: Solid State Physics 7 (24): L457. doi:10.1088/0022-3719/7/24/006. Bibcode1974JPhC....7L.457G. 
  93. Mansfield, P.; Maudsley, A. A. (1977). "Medical imaging by NMR". British Journal of Radiology 50 (591): 188–94. doi:10.1259/0007-1285-50-591-188. PMID 849520. 
  94. Mansfield, P (1977). "Multi-planar image formation using NMR spin echoes". Journal of Physics C: Solid State Physics 10 (3): L55–L58. doi:10.1088/0022-3719/10/3/004. Bibcode1977JPhC...10L..55M. 
  95. Meier, Eric J.; An, Fangzhao Alex; Gadway, Bryce (2016-12-23). "Observation of the topological soliton state in the Su–Schrieffer–Heeger model" (in en). Nature Communications 7 (1). doi:10.1038/ncomms13986. ISSN 2041-1723. PMID 28008924. Bibcode2016NatCo...713986M. 
  96. Su, W. P.; Schrieffer, J. R.; Heeger, A. J. (1979-06-18). "Solitons in Polyacetylene" (in en). Physical Review Letters 42 (25): 1698–1701. doi:10.1103/PhysRevLett.42.1698. ISSN 0031-9007. Bibcode1979PhRvL..42.1698S. https://link.aps.org/doi/10.1103/PhysRevLett.42.1698. 
  97. Linke, Heiner (2023). "Quantum dots — seeds of nanoscience". Swedish Academy of Science. https://www.nobelprize.org/uploads/2023/10/advanced-chemistryprize2023.pdf. 
  98. "The Nobel Prize in Chemistry 2011" (in en-US). https://www.nobelprize.org/prizes/chemistry/2011/press-release/. 
  99. Lee, P. A.; Stone, A. Douglas (1985-10-07). "Universal Conductance Fluctuations in Metals" (in en). Physical Review Letters 55 (15): 1622–1625. doi:10.1103/PhysRevLett.55.1622. ISSN 0031-9007. PMID 10031872. Bibcode1985PhRvL..55.1622L. https://link.aps.org/doi/10.1103/PhysRevLett.55.1622. 
  100. van Houten, Henk; Beenakker, Carlo (1996-07-01). "Quantum Point Contacts" (in en). Physics Today 49 (7): 22–27. doi:10.1063/1.881503. ISSN 0031-9228. Bibcode1996PhT....49g..22V. https://pubs.aip.org/physicstoday/article/49/7/22/409107/Quantum-Point-ContactsThe-quantization-of. 
  101. Jain, J. K. (1989-07-10). "Composite-fermion approach for the fractional quantum Hall effect" (in en). Physical Review Letters 63 (2): 199–202. doi:10.1103/PhysRevLett.63.199. ISSN 0031-9007. PMID 10040805. Bibcode1989PhRvL..63..199J. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.63.199. 
  102. Udagawa, Masafumi; Jaubert, Ludovic (2021-10-19) (in en). Spin Ice. Springer Nature. ISBN 978-3-030-70860-3. https://books.google.com/books?id=LXBJEAAAQBAJ&dq=1997+spin+ice+discovery&pg=PR5. 
  103. Cromie, William J. (1999-02-18). "Physicists Slow Speed of Light" (in en-US). https://news.harvard.edu/gazette/story/1999/02/physicists-slow-speed-of-light/. 
  104. Schwab, K.; E. A. Henriksen; J. M. Worlock; M. L. Roukes (2000). "Measurement of the quantum of thermal conductance". Nature 404 (6781): 974–7. doi:10.1038/35010065. PMID 10801121. Bibcode2000Natur.404..974S. 
  105. Kitaev, A. Yu (October 2001). "Unpaired Majorana fermions in quantum wires" (in en). Physics-Uspekhi 44 (10S): 131–136. doi:10.1070/1063-7869/44/10S/S29. ISSN 1063-7869. https://iopscience.iop.org/article/10.1070/1063-7869/44/10S/S29. 
  106. Castelvecchi, Davide; Sanderson, Katharine (2023-10-03). "Physicists who built ultrafast 'attosecond' lasers win Nobel Prize" (in en). Nature 622 (7982): 225–227. doi:10.1038/d41586-023-03047-w. PMID 37789199. Bibcode2023Natur.622..225C. https://www.nature.com/articles/d41586-023-03047-w. 
  107. "A New Form of Matter: II, NASA-supported researchers have discovered a weird new phase of matter called fermionic condensates". Nasa Science. February 12, 2004. https://science.nasa.gov/science-news/science-at-nasa/2004/12feb_fermi/. 
  108. "Graphene | Properties, Uses & Structure | Britannica" (in en). https://www.britannica.com/science/graphene. 
  109. Kane, C. L.; Mele, E. J. (2005-11-23). "Quantum Spin Hall Effect in Graphene". Physical Review Letters 95 (22). doi:10.1103/PhysRevLett.95.226801. PMID 16384250. Bibcode2005PhRvL..95v6801K. https://link.aps.org/doi/10.1103/PhysRevLett.95.226801. 
  110. Schnyder, Andreas P.; Ryu, Shinsei; Furusaki, Akira; Ludwig, Andreas W. W. (2008-11-26). "Classification of topological insulators and superconductors in three spatial dimensions". Physical Review B 78 (19). doi:10.1103/PhysRevB.78.195125. Bibcode2008PhRvB..78s5125S. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.78.195125. 
  111. Ryu, Shinsei; Schnyder, Andreas P; Furusaki, Akira; Ludwig, Andreas W W (2010-06-17). "Topological insulators and superconductors: tenfold way and dimensional hierarchy". New Journal of Physics 12 (6). doi:10.1088/1367-2630/12/6/065010. ISSN 1367-2630. Bibcode2010NJPh...12f5010R. https://iopscience.iop.org/article/10.1088/1367-2630/12/6/065010. 
  112. Kitaev, Alexei (2009). "Periodic table for topological insulators and superconductors" (in en). AIP Conference Proceedings. AIP. pp. 22–30. doi:10.1063/1.3149495. https://pubs.aip.org/aip/acp/article/1134/1/22-30/815164. 
  113. "Tsinghua Professor Xue Qikun awarded Oliver E. Buckley Prize-Tsinghua University". https://www.tsinghua.edu.cn/en/info/1419/12487.htm. 
  114. "Scientists Discover How to Use Time Crystals to Power Superconductors | Weizmann USA". 2020-03-02. https://www.weizmann-usa.org/news-media/in-the-news/scientists-discover-how-to-use-time-crystals-to-power-superconductors/. 
  115. Xu, Su-Yang; Belopolski, Ilya; Alidoust, Nasser; Neupane, Madhab; Bian, Guang; Zhang, Chenglong; Sankar, Raman; Chang, Guoqing et al. (2015-08-07). "Discovery of a Weyl fermion semimetal and topological Fermi arcs" (in en). Science 349 (6248): 613–617. doi:10.1126/science.aaa9297. ISSN 0036-8075. PMID 26184916. Bibcode2015Sci...349..613X. https://www.science.org/doi/10.1126/science.aaa9297. 
  116. "Researchers map tiny twists in "magic-angle" graphene" (in en). 2020-05-08. https://news.mit.edu/2020/twists-magic-angle-graphene-map-0508. 
  117. "Science's 2024 Breakthrough of the Year: Opening the door to a new era of HIV prevention" (in en). https://www.science.org/content/article/breakthrough-2024#section_altermagnetism.